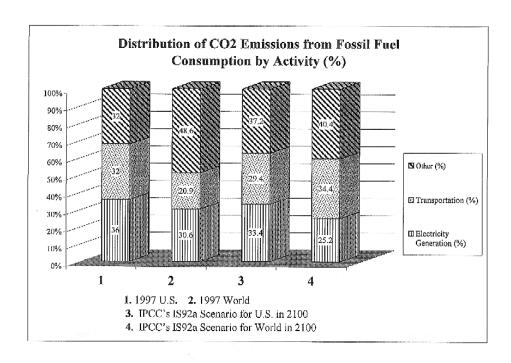
Viewgraphs for Presentation

Nuclear and Alternative Energy Supply Options for an Environmentally Constrained World

A Long-Term Perspective

Robert H. Williams
Center for Energy and Environmental Studies
Princeton University
Princeton, NJ 08544

Nuclear Control Institute's 20th Anniversary Conference "Nuclear Power and the Spread of Nuclear Weapons: Can We Have One Without the Other?"


9 April 2001 Washington, DC

ADDRESSING THE MAJOR ENERGY-RELATED CHALLENGES OF THE 21ST CENTURY

- Additional energy supplies to support population growth (2X) and needs of developing countries
- Air pollution (reduce emission rate $\sim 10^2$ -fold over century)
- Alternatives to conventional oil/natural gas (production will probably peak in 2nd Qtr of century)
- Climate change ($keep\ CO_2\ level < 550\ ppmv$)
- Affordability of energy services
- **→** Radical technological change
- **→** Decades of rapid growth for targeted new technologies

Understanding climate-change mitigation requires long-term (~ century) perspective to appreciate scale of needed effort

CLIMATE CHANGE: MOST DAUNTING CHALLENGE

"BAU" Global CO₂ emissions:

6.2 GtC (1997, actual) —> **20 GtC** (2100, IPCC's IS92a)

Transportation + Other "Fuels Used Directly" = 3/4 of "Problem":

4.3 GtC (1997, actual) —> **15 GtC** (2100, IPCC's IS92a)

Fuels used directly/capita increase 1.4X (to 1/4 US level 1998)

MAJOR OPTIONS FOR ACHIEVING NEAR-ZERO EMISSIONS IN POWER GENERATION

- Nuclear fission
- "New" renewables [mainly wind, photovoltaic (PV)]
- Decarbonized fossil fuels + CO₂ sequestration (esp. in deep geological formations—depleted oil and gas fields, beds of unminable coal, deep saline aquifers)

NUCLEAR POWER

- Nuclear power provided 16% of world electricity, 1998, but little if any net growth to 2020 expected at global level
- Nuclear power renaissance? Only if challenges of cost, safety, waste disposal, nuclear weapons link satisfactorily resolved
- Safety, waste disposal issues probably soluble technically; but waste disposal faces formidable political obstacles
- Weapons link would come into sharp focus if nuclear power →a significant contributor to climate change mitigation

CLIMATE CHANGE MITIGATION/PROLIFERATION NEXUS

Nuclear power & climate change mitigation

- 2,700 GW_e nuclear in 2100 in IS92a with CO₂ emissions ~ 20 GtC/y
- If instead nuclear displaces all coal power → ~ 5,000 GW_e nuclear in 2100, & CO₂ emissions would be ~ 16 GtC/y
- If instead all nuclear power were replaced by coal power in 2100 emissions would be ~ 24 GtC/y

Proliferation risks at high levels of nuclear power deployment

- Proliferation risk especially difficult to manage with shift to Pu recycle, breeder reactors as response to U resource constraints
- Even with U from seawater + OT fuel cycles, keeping weapons link weak difficult with high levels of U enrichment activity required
- At high nuclear power deployment levels, clustering sensitive nuclear facilities in large, heavily guarded "nuclear parks" maintained under international control may be necessary

WIND POWER

- Grid-connected installed capacity grew 30%/y since 1996 to 17 GW $_{\rm e}$ in 2000 (0.24% of global electricity)
- Generation cost < 5 ¢/kWh; good prospects $\rightarrow 3$ ¢/kWh by 2010-2015
- **Huge potential: 20,000–50,000 TWh/y** (1.5-4.0 X global electricity, 1997)
- Challenge: most good wind resources far from major markets
- But can bring remote wind supplies to market as baseload electricity with multi-GWe wind farms + CAES + HV transmission
- CAES (compressed air energy storage) can convert wind power to baseload electricity for 0.5 to 1 ¢/kWh additional cost
- Harnessing 20,000 TWh/y by 2100 (equivalent to 2,900 GW_e nuclear) \rightarrow wind farms on 0.6% of land of inhabited continents, but WF infrastructure requires 5-10% of land; rest can be farmed, ranched, etc.
- In U.S. wind-rich farming/ranching regions WF royalties to farmers/ranchers likely to be \geq current farming/ranching incomes

PHOTOVOLTAIC POWER

- PV sales grew 15%/y, 1983-1999, reaching 200 MW_p/y, 1999
- Module costs have fallen, \$40/W_p (1976) to \$4/W_p (at present)
- PV competitive w/o subsidy in markets remote from electric grids but lags wind in central-station power applications ($costs \sim 25-35 \ e/kWh$)
- But large market opportunities soon for grid-connected distributed applications—esp. building-integrated systems near users
- PV system costs for residential rooftop PV falling: \$17/W_p (1984) \rightarrow \$9/W_p (1992) \rightarrow \$6/W_p (1996), and (expected) \rightarrow <\$3/W_p after ~ 2005
- $$3/W_p$ can be achieved with "learned out" current technology + large-scale (100 MW_p/y) module production facilities
- At \$3/W_p PV cost-effective for ~ 10 million US homes @ 4 kW each with mortgage financing + net metering only $(10 12 \, \phi/kWh)$
- This early market will spur PV technological development → good prospects for central station costs ~ 4.5 5.5 ¢/kWh by 2030

COAL POWER WITH NEAR-ZERO EMISSIONS?

- Coal integrated gasifier/combined cycle (*IGCC*) plants are becoming cost-competitive with coal steam-electric plants ($3.2 \ \phi/kWh$), offering air pollutant emissions as low as for natural gas combined cycles
- IGCC technology also offers least costly route for coal to near-zero CO_2 emissions with commercial technology (cost penalty ~ 1.5 ¢/kWh); overall efficiency (~ 36%) not less than for typical new conventional coal steam-electric plants w/o CO_2 separation/disposal (~ 35.5%)
- Coal power cost w/CO₂ separation/disposal < for nuclear power, most regions; reduced costs likely w/advanced fossil energy technologies
- Growing scientific confidence that potential for secure CO₂ disposal in geological formations is perhaps several 10³ GtC—equivalent to large fraction of carbon in remaining recoverable fossil fuels
- Greatest sequestration potential: deep saline aquifers—but early deployment will focus on depleted oil/gas fields & beds of unminable coal (to get benefits of enhanced oil/natural gas recovery & enhanced coal-bed methane recovery in conjunction with CO₂ sequestration)

ZERO EMISSIONS FOR FUELS USED DIRECTLY?

- Fuels used directly account for 2/3 of CO₂ emissions now & perhaps 3/4 of emissions by 2100 (~ 15 Gt/y under IS92a)
- Climate stabilization cannot be realized without achieving deep reductions in CO₂ emissions for fuels used directly
- Least costly option: make H₂ from fossil fuels with CO₂ sequestration
- W/commercial technology: H₂ can be produced from NG (with CO₂ separation/disposal) for \$1/gallon, gasoline equivalent energy (plant gate cost)
- With advanced technologies H₂ from coal is likely to cost less
- Poor prospects that H₂ could ever be produced at costs competitive even with current H₂ from NG technology—via electrolytic processes (based on nuclear, wind, or PV power) or via thermochemical processes (based on nuclear or solar heat)

NEEDS IN ADDRESSING 21ST CENTURY CHALLENGES

• There are plausible combinations of energy supply technologies with which all major challenges can be addressed effectively:

[E.g., emphasize: wind/PV for power generation; decarbonized fossil energy/ CO_2 sequestration for fuels used directly]

- Addressing challenges effectively with any set of options will require extraordinarily rapid deployment rates sustained over several decades that are not feasible under free market conditions
- Need public policies that: set goals for tackling challenges; support R&D; create market-launching incentives for promising radical innovations; foster competitive market conditions after market launch
- Establishing such policies and keeping them in place long enough to make a difference requires high degree of public support
- Needed policies can endure over decades in democratic societies only if targeted technologies are enthusiastically embraced by general public

PROSPECTS FOR "SUSTAINED ENTHUSIASTIC EMBRACE" BY GENERAL PUBLIC

New renewables

Opinion polls/studies indicate PV, wind have best prospects for garnering broad public support

Fossil energy decarbonization/CO₂ sequestration

How will general public regard this advanced fossil energy option? Too soon to tell—technology unfamiliar to most

- CO₂ not radioactive & not harmful if leakage rates can be kept low (for which prospects seem to be good)
- Most promising technologies also offer near-zero air pollution
- Best prospects if renewable energy enthusiasts come to see these as complements to renewables, rather than competitors

PROSPECTS FOR "SUSTAINED ENTHUSIASTIC EMBRACE" BY GENERAL PUBLIC (continued)

Nuclear power: Can public enthusiasm be rekindled/sustained?

- Industry must first overcome intense hostility among many groups
- Sustainable nuclear renaissance likely only if new technologies come into market that are judged to be decisively better than alternatives
- If there were a nuclear renaissance, nuclear weapons connection would move to front & center stage at high levels of capacity deployment
- International "nuclear park" option might make most of general public comfortable with nuclear weapons link issue, but would national governments accept giving up some degree of energy sovereignty?
- Finally, there is risk that public policies/resources committed to resurrecting the nuclear option would weaken efforts to develop/commercialize non-nuclear technologies that could have far greater impact in climate-change mitigation